EARTHQUAKE 3D Enhanced Edition.rar
Download File >>> https://cinurl.com/2t85zm
Founded in 1975, Computers and Structures, Inc. (CSI) is recognized globally as the pioneering leader in software tools for structural and earthquake engineering. Software from CSI is used by thousands of engineering firms in over 160 countries for the design of major projects, including the Taipei 101 Tower in Taiwan, One World Trade Center in New York, the 2008 Olympics Birds Nest Stadium in Beijing and the cable-stayed Centenario Bridge over the Panama Canal. CSI's software is backed by more than four decades of research and development, making it the trusted choice of sophisticated design professionals everywhere.
\r\n\t\t\tCSI offers an enhanced error notification service for customers wishing to comply with reporting regulations set forth by the nuclear industry. With this service, customers receive a customized notification whenever a qualifying error is found in CSI software, including the nature, scope and impact of the error and a workaround whenever possible. Customers may make their own determination as to whether the error is safety-related. Contact CSI Sales for more information about the Error Notification Service or contact sales for pricing. CSI does not report software errors directly to the NRC or any other agency. \r\n\t\t
Zoom and spin your way around the globe while viewing earthquakes in 3D. Adjust and customize the display to see earthquakes in a variety of different ways. Filter earthquakes by size and time - then select from many options that include quake indicators and map references. Earthquakes are shown in near real-time using the latest data from the USGS via the Internet.
We were initially impressed with the interface. The controls all looked basic, but soon we discovered that the Help file didn't do more than give a description of the product, and some actions we wanted to perform were not intuitive enough. The program itself was a spinning globe with magnitudes and the traditional multiring circles indicating earthquakes. We appreciated how the control panel let us filter quakes by severity and changed the globe's look to better see the quakes. This all functioned great, but zooming in was impossible. We learned with ease how to rotate the globe using our mouse, but could not get a closer look, even though it's the first thing the description promised. After several fruitless minutes we grew frustrated and gave up. On a more interesting note, the program did have a feature that updated the globe with the newest quakes. But this wasn't enough to rescue this program from its unfortunate lack of direction.
I have done a model of the hollow pile using embedded beam elements and trying to do earthquake analysis using the free field. I am encountering error code 40. also, I am unable to open output for this analysis, it's showing an error application. I also checked my soil data. But not finding any problem. Please help me to solve this issue.
Vegetation has been previously proposed as a method for protecting artificial and natural slopes against shallow landslides (e.g. as may be triggered by an earthquake); however, previous research has concentrated on individual root soil interaction during shear deformation rather than the global slope behaviour due to the extreme expense and difficulty involved in conducting full-scale field tests. Geotechnical centrifuge modelling offers an opportunity to investigate in detail the engineering performance of vegetated slopes, but its application has been restricted due to the lack of availability of suitable root analogues that can repeatably replicate appropriate mechanical properties (stiffness and strength) and realistic 3D geometry. This study employed 3D printing to develop a representative and repeatable 1:10 scale model of a tree root cluster (representing roots up to 1.5 m deep at prototype scale) that can be used within a geotechnical centrifuge to investigate the response of a vegetated slope subject to earthquake ground motion. The printed acrylonitrile butadiene styrene (ABS) plastic root model was identified to be highly representative of the geometry and mechanical behaviour (stiffness and strength) of real woody root systems. A programme of large direct shear tests was also performed to evaluate the additional strength provided by the root analogues within soil that is slipping and investigate the influence of various characteristics (including root area ratio (RAR), soil confining effective stress and root morphology) on this reinforcing effect. Our results show that root reinforcement is not only a function of root mechanical properties but also depends on factors including surrounding effective confining stress (resulting in depth dependency even for the same RAR), depth of the slip plane and root morphology. When subject to shear loading in soil, the tap root appeared to structurally transfer load within the root system, including to smaller and deeper roots which subsequently broke or were pulled out. Finally, the root analogues were added to model slopes subjected to earthquake ground motion in the centrifuge, where it was revealed that vegetation can substantially reduce earthquake-induced slope deformation in the soil conditions tested (76% reduction on crest permanent settlement during slippage). Both the realistic 3D geometry and highly simplified root morphologies, as characterised mechanically by the shear tests, were tested in the centrifuge which, despite exhibiting very different levels of additional strength in the shear tests, resulted in very similar responses of the slopes. This suggests that once a certain minimum level of reinforcement has been reached which will alter the deformation mechanism within the slope, further increases of root contribution (e.g. due to differences in root morphology) do not have a large further effect on improving slope stability.
Landslides induced by long and/or intense rainfall or earthquake events have significant effects on lives and infrastructure in many parts of the world (Petley 2012). As an example, in the 2008 Wenchuan earthquake, 69,227 lives were lost and 374,643 people injured, with a further 17,923 listed as missing. During this event, tens of thousands of landslides were triggered over a broad area, some of which buried large sections of some towns and blocked transport links and dammed rivers (Dai et al. 2011). It was estimated that the total losses exceeded £80 billion, and the losses from the earthquake-triggered landslides accounted for over a third of the total earthquake losses (Chen et al. 2008).
Many types of traditional geotechnical methods have been used to improve the slope stability and reduce landslides, such as soil nailing, piles and retaining walls. Compared with those traditional methods, vegetation is an effective and more environmental-friendly approach and has been incorporated into engineering practice (Stokes et al. 2014). To investigate the global performance of rooted slopes and verify the contribution of roots to the behaviour of slopes, some trials (e.g. Smethurst et al. 2006; Leung and Ng 2013) have previously been conducted in the field or on 1:1 scaled slope models. An increased occurrence of shallow landslides has been observed after deforestation of natural forested slopes (Preti 2013; Vergani et al. 2014), such as in southeast Alaska where it was reported that the frequency of landslides increased by 3.8 times after a large-scale decline of yellow cedar (Johnson and Wilcock 2002). However, such large trials are expensive and time consuming, and therefore relatively rare, and have not considered earthquakes as a trigger due to the additional time dependency of a large earthquake occurring while the slope is actively instrumented. An alternative approach which has previously been followed has been to collect information on the root properties (e.g. root tensile strength, root architecture, root cohesion) from stable slopes in situ and perform back calculations of slope behaviour employing existing analytical models or computational models (e.g. Danjon et al. 2008; Mao et al. 2014). This approach highly depends on the accuracy of the analytical models or soil constitutive models selected (Wu 2013). While this has indicated some of the characteristics that impact the global performance of rooted slope, there is a limit to the information that can be gathered from only stable slopes. 2b1af7f3a8